What are the convergence criteria of the genetic algorithm

Introduction to Evolutionary Algorithms pp 33-110 | Cite as

Part of the Computational Intelligence book series (CI)


Genetic algorithms (GA) go back to the work of John Holland in the 1960s. Holland wanted above all to explain the mechanisms of adaptive systems and in the form of so-called reproductive plans (later referred to as GA) on computers. Biological evolution served as a model for him. Holland's ideas, which are most comprehensively documented in [HOLL92 / 75], were soon also used for optimization purposes. Numerous modifications of the original Holland method, often referred to as "canonical GA", have been proposed. Their main aim is to improve the performance of GA when there are optimization problems. The well-known introductory text book by the Holland student David Goldberg [GOLD89] ultimately contributed decisively to the widespread use of the method.1

This is a preview of subscription content, log in to check access.


Unable to display preview. Download preview PDF.

Literature for chapter 2

  1. Back, T .: Evolutionary Algorithms in Theory and Practice, New York: Oxford University Press 1996. Google Scholar
  2. Baker, J.E .: Adaptive Selection Methods for Genetic Algorithms, in: [GREF85], pp. 101-111. Google Scholar
  3. ] Baker, J.E .: Reducing Bias and Inefficiency in the Selection Algorithm, in: [GREF87], pp. 14-21. Google Scholar
  4. Belew, R.K .; Booker, L.B. (Ed.): Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo / CA: Morgan Kaufmann 1991. Google Scholar
  5. Bethke, A.D .: Genetic Algorithms as Function Optimizers, Dissertation, University of Michigan, Ann Arbor 1980. Google Scholar
  6. ] Beyer, H.-G .: Toward a Theory of Evolution Strategies: On the Benefits of Sex - The (u / µ, X) Theory, in: Evolutionary Computation 3 (1995) 1, pp. 81-111. Google Scholar
  7. Blickle, T .; Thiele, L .: A Comparison of Selection Schemes Used in Genetic Algorithms, TIK-Report No. 11 (Version 2), ETH Zurich TIK 1995.Google Scholar
  8. ] Booker, L.B .: Recombination Distributions for Genetic Algorithms, in: [WHIT93], pp. 29-44.Google Scholar
  9. Davis, L .: Job Shop Scheduling with Genetic Algorithms, in: [GREF85], pp. 136-140.Google Scholar
  10. Davidor, Y .: Epistasis Variance: Suitability of a Representation to Genetic Algorithms, in: Complex Systems 4 (1990), pp. 369-383. Google Scholar
  11. Davis, L. (Ed.): Handbook of Genetic Algorithms, New York: Van Nostrand Reinhold 1991. Google Scholar
  12. Davis, L .: A Genetic Algorithms Tutorial, in: [DAVI91a], pp. 1-101.Google Scholar
  13. Davidor, Y .; Schwefel, H.-P .; Men, R. (Ed.): Parallel Problem Solving from Nature - PPSN III, LNCS 866, Berlin: Springer 1994.Google Scholar
  14. Deb, K .; Goldberg, D.E .: An Investigation of Niche and Species Formation in Genetic Function Optimization, in: [SCHA89a], pp. 42-50.Google Scholar
  15. Deb, K .: Binary and Floating-Point Optimization Using Messy Genetic Algorithms, Dissertation, Technical Report TCGA 91004, University of Alabama, The Clearinghouse for Genetic Algorithms, Tuscaloosa 1991. Google Scholar
  16. Eiben, A.E .; Aarts, E.H.L .; Van Lee, K.M .: Global Convergence of Genetic Algorithms: a Markov Chain Analysis, in: [SCHW91], pp. 4-12.Google Scholar
  17. Eiben, A.E .; Raué, P.-E .; Ruttkay, Z .: Genetic Algorithms with Multi-Parent Recombination, in: [DAVI94], pp. 78-87.Google Scholar
  18. Eiben, A.E .; van Kemenade, C.H.M .: Performance of Multi-Parent Crossover Operators on Numerical Function Optimization Problems, Technical Report 95-33, Rijksuniversiteit to Leiden, Vakgroep Informatica, Leiden 1995. Google Scholar
  19. Eshelman, L.J .; Caruana, R.A .; Schaffer, J.D: Biases in the Crossover Landscape, in: [SCHA89a], pp. 10-19.Google Scholar
  20. Eshelman, L.J .; Schaffer, J.D .: Real-Coded Genetic Algorithms and Interval-Schemata, in: [WHIT93], pp. 187-202.Google Scholar
  21. Eshelman, L.J. (Ed.): Proceedings of the Sixth International Conference on Genetic Algorithms, San Francisco: Morgan Kaufmann 1995. Google Scholar
  22. Falkenauer, E .: A New Representation and Operators for Genetic Algorithms Applied to Grouping Problems, in: Evolutionary Computation 2 (1994) 2, pp. 123-144. Google Scholar
  23. FOGA94] Fogarty, T.C. (Ed.): Evolutionary Computing, LNCS 865, Berlin: Springer 1994. CrossRefGoogle Scholar
  24. Fogel, D.B .: Evolutionary Computation. Toward a New Philosophy of Machine Intelligence, New York: IEEE Press 1995.Google Scholar
  25. Fonseca, C.M .; Fleming, P.J .: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization, in: [FORR93], pp. 416-423.Google Scholar
  26. Fonseca, C.M .; Fleming, P.J .: An Overview of Evolutionary Algorithms in Multiobjective Optimization, in: Evolutionary Computation 3 (1995) 1, pp. 1-16. Google Scholar
  27. Forrest, S .: Scaling Fitnesses in the Genetic Algorithm, unpublished manuscript (program documentation), University of Michigan, Ann Arbor 1985. Google Scholar
  28. Forrest, S. (Ed.): Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo / CA: Morgan Kaufmann 1993. Google Scholar
  29. Fox, B.R .; McMahon, M.B .: Genetic Operators for Sequencing Problems, in: [RAWL91], pp. 284-300.Google Scholar
  30. Goldberg, D.E .; Lingle Jr., R .: Alleles, Loci, and the Traveling Salesman Problem, in: [GREF85], pp. 154-159.Google Scholar
  31. Goldberg, D.E .; Smith, R.E .: Nonstationary Function Optimization Using Genetic Algorithms with Dominance and Diploidy, in: [GREF87], pp. 59-68. Google Scholar
  32. ] Goldberg, D.E .; Richardson, J .: Genetic Algorithms with Sharing for Multimodal Function Optimization, in: [GREF87], pp. 41-49.Google Scholar
  33. Goldberg, D.E .: Genetic Algorithms in Search, Optimization, and Machine Learning, Reading / MA: Addison-Wesley 1989.zbMATHGoogle Scholar
  34. Goldberg, D.E .; Deb. K .: A Comparative Analysis of Selection Schemes Used in Genetic Algorithms, in: [RAWL91], pp. 69-93.Google Scholar
  35. Goldberg, D.E .; Deb, K .; Kargupta, H .; Harik, G .: Rapid, Accurate Optimization of Difficult Problems Using Fast Messy Genetic Algorithms, in: [FORR93], pp. 56-64.Google Scholar
  36. Grefenstette, J.J. (Ed.): Proceedings of an International Conference on Genetic Algorithms and Their Applications, Hillsdale / NJ: Lawrence Erlbaum 1985. Google Scholar
  37. Grefenstette, J.J .: Optimization of Control Parameters for Genetic Algorithms, in: IEEE Transactions on Systems, Man, and Cybernetics 16 (1986) 1, pp. 122-128. Google Scholar
  38. Grefenstette, J.J. (Ed.): Genetic Algorithms and their Applications. Proceedings of the Second International Conference on Genetic Algorithms, Hillsdale / NJ: Lawrence Erlbaum 1987.Google Scholar
  39. Grefenstette, J.J .; Baker, J.E .: How Genetic Algorithms Work: A Critical Look at Implicit Parallelism, in: [SCHA89a], pp. 20-27.Google Scholar
  40. Grefenstette, J.J .: Deception Considered Harmful, in: [WHIT93], pp. 75-91.Google Scholar
  41. Hillis, W.D .: Co-Evolving Parasites Improve Simulated Evolution as an Optimization Procedure, in: Physica D 42 (1990), pp. 228-234. Google Scholar
  42. Hinterding, R .; Gielewski, H .; Peachey, T.C .: The Nature of Mutation in Genetic Algorithms, in: [ESHE95], pp. 65-72. Google Scholar
  43. Hollstien, R.B .: Artificial Genetic Adaptation in Computer Control Systems, Dissertation, University of Michigan, Ann Arbor 1971.Google Scholar
  44. Holland, J.H .: Adaptation in Natural and Artificial Systems, 2nd A., Cambridge / MA: MIT Press 1992 (1st A., Ann Arbor: The University of Michigan Press 1975). Google Scholar
  45. Horn, J .; Nafpliotis, N .; Goldberg, D.B .: A Niched Pareto Genetic Algorithm for Multiobjective Optimization, in: Proceedings of the IEEE Conference on Evolutionary Computation, Orlando / FL 1994, pp. 82-87. Google Scholar
  46. Horn, J .; Goldberg, D.E .: Genetic Algorithm Difficulty and the Modality of Fitness Landscapes, in: [WHIT95], pp. 243-269.Google Scholar
  47. Iosifescu, M .: Finite Markov Processes and Their Applications, Chichester: Wiley 1980.zbMATHGoogle Scholar
  48. Jones, T .: Crossover, Macromutation, and Population-Based Search, in: [ESHE95], pp. 73-80.Google Scholar
  49. Jones, T .; Forrest, S .: Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms, in: [ESHE95], pp. 184-192.Google Scholar
  50. De Jong, K .: An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Dissertation, University of Michigan, Ann Arbor 1975. Google Scholar
  51. De Jong, K .; Spears, W.M .: An Analysis of the Interacting Roles of Population Size and Crossover in Genetic Algorithms, in: [SCHW91], p. 3847. Google Scholar
  52. De Jong, K .: Genetic Algorithms are NOT Function Optimizers, in: [WHIT93], pp. 5-17.Google Scholar
  53. JONG93b] De Jong, K .; Sarma, J .: Generation Gaps Revisited, in: [WHIT93], pp. 19-28.Google Scholar
  54. Julstrom, B.A .: What Have You Done for Me Lately? Adapting Operator Probabilities in a Steady-State Genetic Algorithm, in: [ESHE95], p. 8187. Google Scholar
  55. Lee, I .; Sikora, R .; Shaw, M.J .: Joint Lot Sizing and Sequencing With Genetic Algorithms for Scheduling: Evolving the Chromosome Structure, in: [FORR93], pp. 383-389.Google Scholar
  56. Levenick, J.R .: Metabits: Generic Endogeneous Crossover Control, in: [ESHE95], pp. 88-95.Google Scholar
  57. Liepins, G.E .; Hilliard, M.R .; Richardson, J .; Palmer, M .: Genetic Algorithms Applications to Set Covering and Traveling Salesman Problems, in: Brown, D.E .; White, C.C. (Ed.): Operations Research and Artificial Intelligence: The Integration of Problem-Solving Strategies, Boston: Kluwer 1990, pp. 29-57. CrossRefGoogle Scholar
  58. Macready, W.G .; Wolpert, D.H .: On 2-armed Gaussian Bandits and Optimization, Technical Report SFI-TR-96-03-009, Santa Fe Institute, Santa Fe 1996. Google Scholar
  59. Mahfoud, S.W .: Crowding and Preselection Revisited, in: [MÄNN92], pp. 27-36.Google Scholar
  60. Mahfoud, S.W .: A Comparison of Parallel and Sequential Niching Methods, in: [ESHE95], pp. 136-143.Google Scholar
  61. Manderick, B .; de Weger, M .; Spiessens, P .: The Genetic Algorithm and the Structure of the Fitness Landscape, in: [BELE91], pp. 143-150.Google Scholar
  62. Men, R .; Manderick, B. (Ed.): Parallel Problem Solving from Nature, Proceedings of the Second Conference on Parallel Problem Solving from Nature, Amsterdam: North-Holland 1992. Google Scholar
  63. Mathias, K.E .; Whitley, L.D .: Changing Representations During Search: A Comparative Study of Delta Coding, in: Evolutionary Computation 2 (1994) 3, pp. 249-278. Google Scholar
  64. De la Maza, M .; Tidor, B .: An Analysis of Selection Procedures with Particular Attention Paid to Proportional and Boltzmann Selection, in: [FORR93], pp. 124-131.Google Scholar
  65. Michalewicz, Z .: Genetic Algorithms, Numerical Optimization, and Constraints, in: [ESHE95], pp. 151-158. Google Scholar
  66. Michalewicz, Z .: Genetic Algorithms + Data Structures = Evolution Programs, 3rd A., Berlin: Springer 1996. Google Scholar
  67. Mitchell, M .: An Introduction to Genetic Algorithms, Cambridge / MA: The MIT Press 1996. Google Scholar
  68. Mühlenbein, H .: Evolution in Time and Space - The Parallel Genetic Algorithm, in: [RAWL91], pp. 316–337.Google Scholar
  69. Mühlenbein, H .: How Genetic Algorithms Really Work I. Mutation and Hillclimbing, in: [MÄNN92], pp. 15-25.Google Scholar
  70. Munakata, T .; Hashier, D.J .: A Genetic Algorithm Applied to the Maximum Flow Problem, in: [FORR93], pp. 488-493.Google Scholar
  71. Ng, K.P .; Wong, K.C .: A New Diploid Scheme and Dominance Change Mechanism for Non-Stationary Function Optimization, in: [ESHE95], p. 159166.Google Scholar
  72. Nissen, V .: Evolutionary Algorithms. Presentation, examples, business management applications, Wiesbaden: DUV 1994.Google Scholar
  73. Oei, C.K .; Goldberg, D.E .; Chang, S.J .: Tournament Selection, Niching, and the Preservation of Diversity, I1IiGAL Report 91011, University of Illinois, Illinois Genetic Algorithms Laboratory, Urbana-Champaign 1991. Google Scholar
  74. Oliver, I.M .; Smith, D.J .; Holland, J.R.C .: A Study of Permutation Crossover Operators on the Traveling Salesman Problem, in: [GREF87], pp. 224-230.Google Scholar
  75. Paredis, J .: Co-evolutionary Constraint Satisfaction, in: [DAVI94], pp. 46-55.Google Scholar
  76. Poon, P.W .; Carter, J.N .: Genetic Algorithm Crossover Operators for Ordering Applications, in: Computers & Operations Research 22 (1994) 1, pp. 135-147. Google Scholar
  77. Radcliffe, N.J .: The Algebra of Genetic Algorithms, in: Annals of Mathematics and Artificial Intelligence 10 (1994), pp. 339-384. Google Scholar
  78. Rawlins, G.J.E. (Ed.): Foundations of Genetic Algorithms, San Mateo / CA: Morgan Kaufmann 1991. Google Scholar
  79. Richardson, J.T .; Palmer, M.R .; Liepins, G .; Hilliard, M .: Some Guidelines for Genetic Algorithms with Penalty Functions, in: [SCHA89a], pp. 191-197.Google Scholar
  80. Rosin, C.D .; Belew, R.K .: Methods for Competitive Co-Evolution: Finding Opponents Worth Beating, in: [ESHE95], pp. 373-380.Google Scholar
  81. Rudolph, G .: Convergence Analysis of Canonical Genetic Algorithms, in: IEEE Transactions on Neural Networks 5 (1994) 1, pp. 96-101. Google Scholar
  82. Rudolph, G .: Unpublished document on the lecture “Theory of Evolutionary Algorithms: State of the Art”, held at the seminar “Evolutionary Algorithms and Their Applications”, Dagstuhl Castle, March 1996.Google Scholar
  83. Schaffer, J.D .: Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms, Dissertation, Vanderbilt University, Nashville 1984.Google Scholar
  84. Schaffer, J.D .; Morishima, A .: An Adaptive Crossover Distribution Mechanism for Genetic Algorithms, in: [GREF87], pp. 36-40.Google Scholar
  85. Schaffer, J.D. (Ed.): Proceedings of the Third International Conference on Genetic Algorithms, San Mateo / CA: Morgan Kaufmann 1989, Google Scholar
  86. Schaffer, J.D .; Caruana, R.A .; Eshelman, L.J .; Das, R .: A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization, in: [SCHA89a], pp. 51-60.Google Scholar
  87. Schraudolph, N.N .; Belew, R. K .: Dynamic Parameter Encoding for Genetic Algorithms, in: Machine Learning 9 (1992), pp. 9-21. Google Scholar
  88. Schwefel, H.-P .; Men, R. (Ed.): Parallel Problem Solving from Nature, LNCS 496, Berlin: Springer 1991.Google Scholar
  89. Seneta, E .: Non-Negative Matrices and Markov Chains, 2. A., New York: Springer 1981.zbMATHGoogle Scholar
  90. Shaefer, C.G .: The Argot Strategy: Adaptive Representation Genetic Optimization Technique, in: [GREF87], pp. 50-58.Google Scholar
  91. Shapiro, J .; Beat-Bennett, A .; Rattray, M .: A Statistical Mechanical Formulation of the Dynamics of Genetic Algorithms, in: [FOGA94], pp. 17-27.Google Scholar
  92. Spears, W .; De Jong, K .: On the Virtues of Parameterized Uniform Crossover, in: [BELE91], pp. 230-236.Google Scholar
  93. Spears, W .: Crossover or Mutation ?, in: [WHIT93], pp. 221-237.Google Scholar
  94. Spears, W .: Adapting Crossover in Genetic Algorithms, Artificial Intelligence Center Internal Report AIC-94-019, Naval Research Laboratory, Washington / DC 1994. Google Scholar
  95. Starkweather, T .; McDaniel, S .; Mathias, K .; Whitley, L.D .; Whitley, C .: A Comparison of Genetic Sequencing Operators, in: [BELE91], pp. 69-76.Google Scholar
  96. Syswerda, G .: Uniform Crossover in Genetic Algorithms, in: [SCHA89a], pp. 2-9.Google Scholar
  97. Syswerda, G .: A Study of Reproduction in Generational and Steady-State Genetic Algorithms, in: [RAWL91], pp. 94-101.Google Scholar
  98. Voigt, H.-M .; Ebeling, W .; Rechenberg, I .; Sulfur, H.-P. (Ed.): Parallel Problem Solving from Nature - PPSN IV, LNCS 1141, Berlin: Springer 1996. Google Scholar
  99. VOSE91a] Vose, M.D .: Generalizing the Notion of Schema in Genetic Algorithms, in: Artificial Intelligence 50 (1991), pp. 385-396. Google Scholar
  100. Vose, M.D .; Liepins, G.E .: Schema Disruption, in: [BELE91], p. 237242.Google Scholar
  101. Vose, M.D .: A Closer Look at Mutation in Genetic Algorithms, in: Annals of Mathematics and Artificial Intelligence 10 (1994), pp. 423-434. Google Scholar
  102. Whitley, L.D .: The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials Is Best, in: [SCHA89a], pp. 116-121.Google Scholar
  103. Whitley, L.D .; Starkweather, T .; Fuquay, D .: Scheduling Problems and Traveling Salesmen: The Genetic Edge Recombination Operator, in: [SCHA89a], pp. 133-140.Google Scholar
  104. Whitley, L.D .: Fundamental Principles of Deception in Genetic Search, in: [RAWL91], pp. 221-241.Google Scholar
  105. Whitley, L.D .: Foundations of Genetic Algorithms 2, San Mateo / CA: Morgan Kaufmann 1993. Google Scholar
  106. Whitley, L.D .; Vose, M.D .: Foundations of Genetic Algorithms 3, San Francisco / CA: Morgan Kaufmann 1995.Google Scholar
  107. Winston, W.L .: Operations Research: Applications and Algorithms, Boston: Duxbury Press 1987.zbMATHGoogle Scholar
  108. Wright, A.H .: Genetic Algorithms for Real Parameter Optimization, in: [RAWL91], pp. 205-218.Google Scholar
  109. Bäck, T .: Generalized Convergence Models for Tournament-and (µ, X) -Selection, in: [ESHE95], pp. 2-8.Google Scholar
  110. Back, T .; Fogel, D.B .; Michalewicz, Z.(Ed.): Handbook of Evolutionary Computation, New York: Oxford University Press (published 1997). ZbMATHGoogle Scholar
  111. Biethahn, J .; Nissen, V. (Ed.): Evolutionary Algorithms in Management Applications, Berlin: Springer 1995.zbMATHGoogle Scholar
  112. The R.; Whitley, L.D .: The Only Challenging Problems Are Deceptive: Global Search by Solving Order-1 Hyperplanes, in: [BELE91], pp. 166-173.Google Scholar
  113. Davis, L. (Ed.): Genetic Algorithms and Simulated Annealing, Los Altos / CA: Morgan Kaufmann 1987.zbMATHGoogle Scholar
  114. De Jong, K.A .; Spears, W.M .: Using Markov Chains to Analyze GAFOs, in: [WHIT95], pp. 115-137. Google Scholar
  115. Eshelman, L.J .; Schaffer, J.D .: Crossover’s Niche, in: [FORR93], pp. 9-14.Google Scholar
  116. Forrest, S .; Mitchell, M .: What Makes a Problem Hard for a Genetic Algorithm? Some Anomalous Results and Their Explanation, in: Machine Learning 13 (1993), pp. 285-319. Google Scholar
  117. Goldberg, D.E .: Sizing Populations for Serial and Parallel Genetic Algorithms, in: [SCHA89a], pp. 70-79.Google Scholar
  118. Goldberg, D.E .: Genetic Algorithms and Walsh Functions: Part II, Deception and its Analysis, in: Complex Systems 3 (1989), pp. 153-171. Google Scholar
  119. Goldberg, D.E .; Rudnick, M .: Genetic Algorithms and the Variance of Fitness, in: Complex Systems 5 (1991), pp. 265-278. Google Scholar
  120. Hart, W.E .; Belew, R.K .: Optimizing an Arbitrary Function Is Hard for the Genetic Algorithm, in: [BELE91], pp. 190-195.Google Scholar
  121. Heistermann, J .: Genetic Algorithms. Theory and Practice of Evolutionary Optimization, Stuttgart: Teubner 1994.Google Scholar
  122. Horn, J .; Goldberg, D.E .; Deb, K .: Long Path Problems, in: [DAVI94], pp. 149-158. Google Scholar
  123. Kauffman, S.A .: Adaptation on Rugged Fitness Landscapes, in: Stein, D.L. (Ed.): Lectures in the Sciences of Complexity, Vol. 1, Redwood City / CA: Addison-Wesley 1989, pp. 527-618. Google Scholar
  124. Mühlenbein, H .; Schlierkamp-Voosen, D .: The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA), in: Evolutionary Computation 1 (1993) 4, pp. 335-360. Google Scholar
  125. Peck, C.C .; Dhawan, A.P .: Genetic Algorithms as Global Random Search Methods: An Alternative Perspective, in: Evolutionary Computation 3 (1995) 1, pp. 39-80. Google Scholar
  126. Reeves, C.R .: Using Genetic Algorithms with Small Populations, in: [FORR93], pp. 92-99.Google Scholar
  127. Rosé, H .; Ebeling, W .; Asselmeyer, T .: The Density of States - A Measure of the Difficulty of Optimization Problems, in: [VOIG96], pp. 208-217.Google Scholar
  128. Schaffer, J.D .; Eshelman, L.J .: On Crossover as an Evolutionary Viable Strategy, in: [BELE91], pp. 61–68.Google Scholar
  129. Schaffer, J.D .; Eshelman, L.J .; Offutt, D .: Spurious Correlations and Premature Convergence in Genetic Algorithms, in: [RAWL91], pp. 102-112.Google Scholar
  130. Schoenauer, M .; Michalewicz, Z .: Evolutionary Computation at the Edge of Feasibility, in: [VOIG96], pp. 245-254. Google Scholar
  131. Smith, R.E .; Goldberg, D.E .: Diploidy and Dominance in Artificial Genetic Search, in: Complex Systems 6 (1992), pp. 251-285. Google Scholar
  132. Thierens, D .; Goldberg, D.E .: Convergence Models of Genetic Algorithm Selection Schemes, in: [DAVI94], pp. 119-129.Google Scholar
  133. Turner, A .; Corne, D .; Ritchie, G .; Ross, P .: Obtaining Multiple Distinct Solutions with Genetic Algorithm Niching Methods, in: [VOIG96], S, 451-460.Google Scholar
  134. Voget, S .: Aspects of Genetic Optimization Algorithms: Mathematical Modeling and Use in Timetable Creation, Dissertation, University of Hildesheim, Faculty IV, Hildesheim 1995.